Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

نویسندگان

  • J. Squire
  • H. Qin
  • W. M. Tang
چکیده

A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss’s law. PACS numbers: 52.65.Rr, 52.65.Ff, 52.25.Dg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast curve fitting using neural networks

Related Articles Optimization of the configuration of pixilated detectors based on the Shannon-Nyquist theory Rev. Sci. Instrum. 83, 10E139 (2012) Multiscale reactive molecular dynamics J. Chem. Phys. 137, 22A525 (2012) Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement Biomicrofluidics 6, 034112 (2012) Geometri...

متن کامل

A general theory for gauge-free lifting

A theory for lifting equations of motion for charged particle dynamics, subject to given electromagnetic like forces, up to a gauge-free system of coupled Hamiltonian Vlasov-Maxwell like equations is given. The theory provides very general expressions for the polarization and magnetization vector fields in terms of the particle dynamics description of matter. Thus, as is common in plasma physic...

متن کامل

On the Controllability of the Relativistic Vlasov-maxwell System

In this paper, we study the controllability of the two-dimensional relativistic Vlasov-Maxwell system in a torus, by means of an interior control. We give two types of results. With the geometric control condition on the control set, we prove the local exact controllability of the system in large time. Our proof in this case is based on the return method, on some results on the control of the M...

متن کامل

GEMPIC: geometric electromagnetic particle-in-cell methods

We present a novel framework for finite element particle-in-cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov–Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is...

متن کامل

Canonical symplectic particle-in- cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov–Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008